1

Carving up the Commons: How Software Patents are Impacting Our Digital Composition Environments

Annette Vee, University of Pittsburgh

This is a pre-print version of the published article. Please refer to the published article for research purposes: “Carving up the Commons: How Software Patent Law Impacts our Digital Composition Environments.” Copyright, Culture, Creativity, and the Commons. Spec. issue of Computers and Composition 27.3 (2010): 179-192. Print.

Abstract

Since the 1980s, there has been a general trend in U.S. courts to allow the patenting of certain aspects of software programs. Digital composition scholars and teachers are indirectly affected by these decisions through the software environments in which we compose, but also directly through our increasingly code-based methods of composition. Just as we can no longer limit our study of writing to text, we can no longer limit our considerations of intellectual property law to the copyright that governs text. Arguments forwarded by legal scholars and programmers against software patents offer not only a convincing critique of the patent system, but they also imply that code should be treated by our legal system more like writing than engineering. An exploration of the software patent debate, then, opens code up for further study in the field of computers and composition.

Keywords

programming, code, patent, intellectual property, composition, software

At first glance, patent law has very little bearing on writing studies. Patents cover such innovations as Prozac, low plastic content water bottles, and ergonomically oriented chairs; although all of these technologies may affect the writer in process, they are not material to the writing itself. Writing is generally thought to be under the intellectual property aegis of copyright law: novels, poems, letters to friends, and grocery lists are all protected forms of expression under U.S. copyright law. However, a certain form of writing—the writing that comprises computer software, or source code—is protected by patent law. In addition to their direct impact on the composition process of computer software, software patents are narrowing the potential for digital composition environments and are circumscribing our writing online. Ontological arguments that equate code with writing, math or engineering can be seen in the legal and software development communities as they passionately debate what the legal protection for software should be. That software patents affect the digital environments in which we and our students compose make them a critical place of study for composition teachers. That these patents force us to consider how the domains of writing, math and code are increasingly intersecting make them a fascinating touchstone for considering the role of computers in composition. Durack (2006) claims that “researchers in cutting-edge subjects can no longer depend on pursuing inquiries in ignorance of the patent system” (p. 315), and I argue that researchers in writing no longer can, either. Just as we can no longer limit our study of writing to text, we can no longer limit our considerations of intellectual property law to the copyright that governs text.

I argue that composition studies should direct attention to the developments in patent law for two main reasons: 1) the programs our students use to compose digitally are implicated in these debates; 2) debates about software patents also affect the composition contexts of code, which is a kind of writing. Code is both a means of enacting processes and a description of those processes. When applied to software, patent law foregrounds the functional aspects of code, rather than the textual aspects. These textual aspects of code, including the style and creativity involved in expressing processes, can be more effectively approached from the analytical tools of writing studies and the intellectual property regime of copyright. A discussion of patent law pertaining to software as well as the creative nature of code composition then serves as an opportunity for writing scholars to become more involved in the current policy debates about software patents, especially as we see our composition environments and processes handicapped by overbroad patent restrictions. To draw greater attention to patent law in writing studies, I first review specific situations where software patents have affected digital writing environments common to composition classes. Next, I briefly outline U.S. patent law, including the case law that gradually made software patentable and the debates about this process. Finally, I visit three code writers—one each from corporate, open source, and freelance contexts—who have all had their writing processes impacted by patent law. An examination of controversies surrounding the intellectual property protection of software reveals rich intersections between writing and code.
1. Code, Composition Studies and Intellectual Property Law
As an instrument that can trivially embed audio, video and graphics and photographs into writing, the computer has revolutionized what we think of linear composition (Bolter, 1991). Writing scholars now routinely consider images, audio, blogs, and games as part of our studied domain, demonstrating the protean powers of the modern computer to translate writing into anything, and anything into writing. Ethan Katsh writes, “electronic media is a technology that does not support boundaries, either physical or conceptual” (as cited in Gurak, 1997, p. 332). The way the computer allows us to more easily remix preexisting material, combined with a legal landscape that increasingly favors copyright owners over those poised to create new content out of the old, has forced us to more carefully consider the political, ethical and practical dimensions of copyright on our professional lives. From Laura Gurak (1997) to Daniélle DeVoss & digirhet (2008) to Steven Westbrook (2009) and others, the work of composition scholars in the area of copyright has helped us negotiate the uncertain impact of the law in our classrooms and professional lives.

As many writing scholars have noted, we have seen an erosion of the public domain in copyright law. Yet little attention has been paid to the impact that patent law can have on the software in which we now compose. A repeated claim in writing studies scholarship over the last 15-20 years is that control over our digital writing environments means control over the code that governs them. As Cynthia Selfe and Richard Selfe (1994) claim, the assumptions embedded in coding practices carry through to our interfaces. For this reason, Paul Leblanc (1993) argues that composition teachers should be composing their own writing software. All of the articles in the 1999 Computers and Composition special issue on code echo, in some way, Leblanc’s (1993) claim that writing teachers should be able to code, or at least help to design, the software environments in which they write. Writing and web-editing software may be robust enough now to deter us from designing our own from scratch; however, programs we can customize such as OpenOffice Writer can make us code-authors, and writing applications through the Firefox extension Greasemonkey can help us manipulate our writing environments online (Ballentine, 2009). However, the existence of software patents means that even the access to the code provided by open source software fails to guarantee our right to customize our writing environments. Patent law can stifle competition that would be beneficial for our composition ecosystem, or they can simply limit features in the software available to us. These limitations may affect our choices or our students’ choices of software, as we may tend to favor proprietary software from companies that wield the most patents and can therefore offer simpler or more elegant, feature-rich environments in which we can compose. Each time this happens, the most popular—and often, proprietary—software for digital composition increases its mindshare, and we lose a modicum of control over the writing environments in which we and our students compose.
Like the shrinking public domain due to stronger copyright law, we can see a carving up of the commons in patent law: programming techniques and features in programs, once patented, are unavailable for common use for 20 years. While the authority for Congress to enact both patent and copyright law stems from the same clause in the U.S. Constitution, the two areas of intellectual property law cover very different types of work through very different processes: a copyright is automatically granted by law for any creative work; a patent is granted for useful, novel, and nonobvious inventions through an extensive application process to the U.S. Patent Office. Copyright law balances a creator’s rights with the “fair use” clause, allowing the public certain (though shrinking) rights to copyrighted material. However, patent law grants much more powerful control over inventions: in exchange for an application fee and a detailed description of the invention, the U.S. Patent and Trademark Office (USPTO) grants a patentholder the right to prevent others from using the invention (or its “equivalent”) without license from the patentholder. Patents have tended to cover inventions closely associated with engineering disciplines: tractors, product packaging, and chemical compounds. However, subtle changes in the law (reviewed in more detail below) have made it easier to apply for and be granted patents on “methods” or techniques in software. Over the last few decades, patents on software have become increasingly common as corporations such as Microsoft struggle to compete in the fast-moving and lucrative market for software. In this way, patents can circumscribe the features available in software, including the software in which we compose both multimodal and more traditional texts.

Simson Garfinkel, Richard Stallman and Mitchell Kapor (1991) open their argument against software patents with an example of a patent dispute affecting a word processing program. A popular program at the time, XyWriter, was forced to eliminate certain autocomplete features because of a threat from another company who had, in the meantime, patented them. Microsoft has frequently attempted to protect its popular Office suite with patents. After it had promoted efforts to adopt the XML format as an open document standard, Microsoft implemented a specific version of XML in its Office 2003 suite and then applied for patents to cover interoperability with it, potentially crippling the open source alternative’s ability to work with Word documents (Fisher, 2004). In 2007, it claimed that its open source rival OpenOffice was violating 45 of its patents. While Microsoft has yet to succeed in its claims against OpenOffice, complex negotiations between Novell (a Linux distributor), Sun (OpenOffice’s corporate sponsor) and Microsoft hold OpenOffice’s fate in the balance (Parloff, 2007).

As the multimodal work that we and our students compose becomes increasingly sophisticated, our exposure to patented software increases as well. For example, the standard image format GIF relied on a patented compression algorithm until 2003, when the patent expired. After the standard had been well-supported, the patent holder, Unisys, went after software that interpreted GIFs. Most just paid Unisys the fee, but free software could not (Klemens, 2006). Patents affect audio composition as well: mp3, the popular compressed audio format in which many of us record podcasts or audio feedback on students’ papers, is restricted by patents. Although mp3 was adopted by the International Standards Organization, later, it turned out to infringe a couple of patents by a German company, Fraunhofer, who was—perhaps uncoincidentally—involved in setting the mp3 standard. As a result, royalties must now be paid to them for almost any program that reads and writes mp3s (Klemens, 2006). This patent restriction is why we must install a separate mp3 encoder to support mp3 files in the open source audio editing program Audacity. Programs such as Sony’s SoundForge support mp3 format out of the box because large corporations such as Sony can afford the royalties or arrange cross-licensing agreements with their own patent portfolio.
Software patents, like our writing, are not restricted to the desktop. As Katherine Durack (2001) has noted, patent law controversies surround the Internet as well: “The Internet is both the object of debate about patentability and the slate upon which much of the argument is inscribed” (p. 504). For instance, the popular online microblog site Twitter was sued in August 2009 for patent violations. TechRadium, the company suing them, had developed a mass communication coordination system for public safety applications, and now claims that Twitter’s service is too close to what they have claimed in three separate software patents (Schonfeld, 2009). Although the outcome of the suit is yet to be determined, Twitter, which has so far failed to make a profit on their service, may be forced to pay royalties or change their software’s features in response to TechRadium’s claims.

Software patents can affect the features and software programs in which we can compose, but they can also affect compositions themselves when those compositions are in code. In addition to incorporating audio and images, digital work such as websites, games or electronic literature can include code as a central part of its composition. For this reason, scholars such as David Rieder (2008) have argued that code is a form of writing and can be governed by aesthetics just as much as writing can be. Like Rieder, many programmers have claimed that code and poetry have similar formal constraints and allow for similar kinds of creative expression. Perl poetry is an often cited example in critical code studies, a branch of analysis that focuses on “code as a text, as a sign system with its own rhetoric, as verbal communication that possesses significance in excess of its functional utility” according to Mark Marino (2006). One suggestion to solve the software patent problem is to limit their terms to just several years; Ben Klemens (2006) points out that the existence of Perl poetry would stymie this approach, however. Where would we draw the line between functionality and expression?

A more public and accessible demonstration of code as a creative text was seen when “songsincode” became a “trending topic” on the popular microblog website Twitter. On August 21, 2009, programmers and wannabes dove into collective pop song memory to produce Perl, PHP, C, or other code language versions of songs like Britney Spears’ “Hit me, baby, one more time,” much to the delight and distraction of code-literate citizens of the twittersphere (Smith, 2009). Each little code puzzle conveyed a reference to a song and so relied on both pop culture and code knowledge to crack it. Some #songsincode similar to those that robbed me of productivity that day include:

1. if (!woman) { cry = false; }
2. final--;
3. $self->set('hot','sticky sweet') while /head/../feet/;
4. if(somethingStrange==true && location == neighborhood){ ghostbusters(); printf("I ain't afraid of no ghost");}
5. if(youAre == 0×000000 || youAre==0xffffff) doesMatter = false;
6. .clowns{float:left;} .jokers{float:right}; #me_you { position:fixed;margin:0 auto;width:100% }
(See below for songs, code languages and credits.
)
As the twittersphere noted that day, #songsincode was highly motivating to those wanting to learn code because it forced people to figure out the syntax to crack the riddle. While the programming functions described in these code puzzles are probably too basic to have been patented, the event suggests that code can be more than functional; #songsincode are human-readable and playful.
The rhetorical parallels between composition in writing and in code were noted by Ron Fortune and Jim Kalmbach (1999) in their introduction to a special issue of this journal on code. Bypassing the creative angle on code, they demonstrate that programming can be elegant, and therefore rhetorical. Code can solve a problem in an efficient and concise way, and that effect can be independent of the program and the interface with which a user might interact. Robert Cummings (2006) carries the connection between writing and programming further: “Though their linkage is relatively unexamined and under-appreciated, both pursuits are inextricably joined by the fact that they center around the act of writers writing. Both types of writers—writers of code and writers of text—write for vastly different audiences and with what would seem to be vastly different products, but […] the underlying model of composition holds true for both communities” (p. 431-2).

Patent law serves the rhetorical aspects of code poorly because it protects its utility without regard to its style or its composition process. A patent protecting a brute force and inelegant solution to a coding conundrum can block the development of better, more effective solutions and expressions of the problem. Just how patent law can obviate elegant code is reviewed in the next section.
2. A Short Review of Patent Law
The U.S. Constitution provides authority for the government to establish laws concerning both patents and copyrights in Article I, Section 8: “The Congress shall have power […] To promote the progress of science and useful arts, by securing for limited times to authors and inventors the exclusive right to their respective writings and discoveries.” After this initial authority granted to Congress, intellectual property laws governing trademark, patent and copyright have diverged. A full accounting of this divergence is impossible here; instead, I will review some of the parallels and differences between patent and copyright law, which with composition scholars are likely to be more familiar. Knowledge of the differences between these intellectual property regimes’ paradigms will help to illuminate why many programmers are in support of copyright but not patent protection for code.
Patent and copyright law are both specified in the U.S. Code, copyright in Title 17 and patent in Title 35. Case law also helps judges interpret the legal code for patents and copyrights. Copyright can be held on “original works of authorship fixed in any tangible medium of expression,” such as “literary works,” “pantomimes,” and “motion pictures” (17 U.S.C. §102). A U.S. patent can only be acquired through an application to the USPTO. Patents can be obtained for inventions in three categories: utility, design, and (biological) plant, with most patents falling into the utility category. According to U.S. law, patentable subject matter is “any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof” (35 U.S.C. §101). In addition to being “useful,” the invention must also be “novel” (§102) and “nonobvious” (§103). A patent grants the right to exclude others from using the specified invention for 20 years (the first U.S. patent law in 1790 granted rights for 14 years). These rights are very powerful, and are therefore balanced by a shorter time limit than copyright as well as a disclosure requirement.
 Inventors must disclose sufficient detail in their patent application to “enable any person skilled in the art to which it pertains…to make and use the same…” (35 U.S.C. §112).
 This disclosure means that when a U.S. patent expires, the public not only has the right to use the invention but also ostensibly has the directions for doing so. In this way, the private investment of the inventor is recouped, while the information the patent-holder provides ensures that the public interest is served once that limited monopoly expires.
Copyright law pays attention to the composition process behind a work of authorship whereas patent law does not. To prove copyright infringement, a rightsholder must demonstrate that at some point during composition the accused actually copied the copyrighted work. In contrast, patent law bars independent discovery; a person can infringe on a patent without knowing the patent existed. Moreover, the doctrine of equivalents (DoE) bars works “equivalent” to the patented invention. The DoE prevents people from trivially circumventing patents, but it can also curtail alternative inventions. For instance, the DoE can prevent software teams from using the “clean room” development model to write code. The “clean room” model describes a team’s reverse-engineering of a software program or feature in an environment completely isolated from copyrighted code. It allows for multiple programs to be created that can fill similar needs without copyright violation; however, this method can still violate patents through the DoE.
Patent applicants naturally try to claim as wide a scope as possible for their invention, but the USPTO can reject claims that are too broad. This balance can work well when patent examiners have sufficient time and information to review applications; however, huge increases in patent applications over the last 30 years as well as the limited information provided with software patent applications have resulted in many overbroad software patents. The conditions of novelty and nonobviousness have been poorly applied to software patents in particular, in part because the patent examiner’s manual does not suggest a review of prior art located in software. Additionally, applications require only a “written description;” consequently, many software patent applications use vague flow charts rather than code to claim their invention (Klemens, 2006). Some of these overbroad patents, like Amazon’s notorious patent on “one-click” ordering, are later challenged and narrowed in court. However, many of them are never challenged because patent litigation is too expensive. As in other areas of the law where “gray areas” must be adjudicated, results in software patent disputes often favor entities with greater resources for savvier lawyers. Those with fewer resources are often forced to settle out of court to conserve their meager means, which may also skew case law to favor more powerful entities. Vandana Shiva’s work describes some of the cultural harm that can occur in these patent cases concerning sides of disparate resources. Specifically, she outlines the stifling of agricultural innovation in developing countries due to the power of plant patents held by more powerful developed countries (Shiva, 2001). Just as multinational agricultural companies such as Monsanto can profit from the ownership of plant patents, large software development corporations can use patents to exert disproportional control over what might otherwise be common innovations. As we will see later, small, underresourced developers such as those in open source software and software start-ups bear the brunt of this impact.

Like copyright law, patent law is determined in part by case law, or decisions from particular patent cases brought before the court. Major shifts in the policies for patent applications and the structure of patent courts have also had a tremendous impact on what the USPTO grants patents for, and whether those patents stand up in court (Jaffe and Lerner, 2004).
 Although the legal ground for software patents is constantly shifting, a review of the history helps us understand how methods expressed in a particular form of writing—software—became patentable subject matter under U.S. law. We can see, for example, that the trend in patentability follows roughly the same arc as copyright, favoring individual creators (or “inventors”) over the public domain. In the case of patents, many of these inventors are actually corporations to whom individuals assign their patent rights as a matter of employment. In line with a general trend in the courts to protect the intellectual property of corporations, decisions made by the designated court for patent appeals, the United States Court of Appeals for the Federal Circuit (CAFC), and the Supreme Court throughout the 1980s and ‘90s had the effect of sanctioning patents on software, although no U.S. law has been passed that expressly provides patent rights to software.
Controversies surrounding software patents began as early as the 1960s, when technologies were developing so quickly that President Johnson put together a special commission to review the USPTO’s policies and methods. The Commission, made up of academics, scientists and industry representatives, recommended in its 1966 report that legislation be introduced to expressly exempt computer programs as patentable subject matter (Samuelson, 1990). No such legislation was passed; however, the USPTO examiner’s guide indicated that computer programs were not patentable, under either the “process” or “machine” category described in 35 U.S.C. §101 (Samuelson, 1990). Two Supreme Court rulings in the 1970s affirmed the idea that computer programs were unpatentable; decisions in Gottschalk v. Benson (1972) and Parker v. Flook (1978) both indicated that the algorithms under review were not far enough removed from pure math to make them patentable.

Decisions in the 1980s and ‘90s reversed the trend against the patentability of algorithms or “methods” without instantiation in physical devices. Gottschalk v. Benson and Parker v. Flook both indicated that only physical machines only should be patentable, but in Diamond v. Diehr (1981), the Supreme Court ruled that the presence of any physical component could make a method patentable. After Diamond v. Diehr (a 5 to 4 Supreme Court decision), software patents began to use the phrase “a general-purpose computer on which is programmed a method to calculate” rather than “a method to calculate” (Klemens, 2006), essentially changing software patents from patents on process to patents on machines. The CAFC ruling In Re Alappat (1994) indicated that simply using the terminology of “machine” renders the invention a physical device. The CAFC decision that finally opened the floodgates on software patents was State Street Bank and Trust v. Signature Financial Group (1998), which unambiguously confirmed that an algorithm run by a computer, i.e., software, was patentable, as long as it was useful.
Two more recent developments complicate this history of patent cases pertaining to software. First, the Digital Millennium Copyright Act (DMCA), as John Logie (2005) points out, “blur[s] the distinction between copyright and patent law” (p. 233) through the way it prevents circumvention of security measures in code. Klemens (2006) demonstrates that the DMCA also offers a new kind of intellectual property protection. This protection prevents such activities as the sharing of large hexadecimal numbers that can be used to allow you to play a DVD on a computer running Linux (i.e., the deCSS code), something to which the MPAA and Microsoft are very opposed (Klemens, 2006). Writing studies, legal and information scholars have already provided excellent analysis of the DMCA (e.g., Logie, 2005) so we will not pursue it further here.
The second major complication in software patent law is a case still in the courts, In re Bilski (2008), which appears to be bucking the trend toward the patentability of software. The Supreme Court is slated to hear the case in 2010, but the decision from the CAFC rejected the “useful, concrete and tangible result” from State Street Bank and suggested a higher bar for eligible process patent claims. However, the case is not about software patents per se, and so the CAFC has declined the request from amici (including Red Hat, the company that sells packaged versions of Linux) to assert a broad exemption for software patents. The Supreme Court’s decision on Bilski could have significant effects on the patent-eligibility of software.

If we consider Bilski, the arc of patent law regarding software is slightly more promising than the one regarding copyright. Moreover, major factions of programmers are against software patents and are pushing back against them. The courts have resisted ruling definitively on software patents, insisting that it is a matter for Congress. But as Pamela Samuelson (2007) indicates, the U.S. software industry has invested heavily in the patent system over the last 25 years. That investment serves as inertia against patent reform. Moreover, some powerful people believe that patents have been beneficial to the software industry. Consequently, the Supreme Court and Congress are unlikely to do away with software patents completely (Samuelson, 2007).
Europe honors U.S. patent law through trade treaties, and the E.U. also, in practice, has allowed software patents (Nard, Barnes & Madison, 2006; Guibault & van Daalen, 2006). This lack of clarity in the U.S. then contributes to an uncertain climate for software development worldwide, especially for small-time programmers without recourse to patent attorneys. Until the U.S. courts or Congress take a more definitive stand, the global legal status of software patents is unclear.
3. How Should Software Be Legally Protected?
Throughout these decisions, we can see the courts struggling to define what software is. Is it a process or a machine? A form of math or engineering or writing? Does the application of code—a kind of text that specifies actions—make a computer into a “specialized machine?” These difficult and metaphysical questions have direct bearing on whether software can be considered patentable subject matter, and so they are hotly debated among legal experts, practicing programmers, open source software advocates, and large companies such as Microsoft and Novell, who all have a stake in the intellectual property protection of software. There is not space to review the 40 years of controversy among these various factions, so I will concentrate on the arguments most pertinent to writing studies: that code as writing or math is protected by the First Amendment, and that the compositional contexts for code often resemble those for writing much more closely than those for manufacturing or engineering.
First, it is crucial to note that most programmers seem to oppose software patents (Boyle, 1996; Lessig, 2001). Although it is impossible to comprehensively survey all programmers, Lawrence Lessig (2001) asserts that Richard Stallman and the software developers at Adobe and Oracle publicly opposed them in the 1990s, and current debates about software patents online are overrun with programmers against them.
 Even Bill Gates has expressed concerns about patents, although, businessman that he is, his concern translates to more patenting of techniques at Microsoft in order to facilitate cross-licensing with companies with large patent portfolios like Hewlett Packard.
 Of course, not all programmers are opposed to software patents; University of Utah professor Lee Hollaar, who recently wrote an amicus brief in favor of software patents for the Supreme Court’s review of Bilski, is one particularly notable exception (Jones, 2009). Additionally, some argue that if the system were built to avoid the plague of obvious and trivial patents, it could be redeemed (Jaffe & Lerner, 2004). However, many programmers, including patent-grantee Paul Graham (2006), are doubtful that the system could be fixed due to the complexities of software. The fact that many working programmers do not want the protection that patents give them should be a critical sign that something is wrong with the system.
In contrast, copyright protection is overwhelmingly supported by programmers in all areas of software development. Copyright protects software from being copied wholesale and given away for free, and prevents cut-and-paste plagiarism of source code. As Richard Stallman, the original author of the GPL “free software” license, has often repeated, the “copyleft” scheme that free and open software relies on is dependent on copyright law (Stallman, 2009). Unlike patent law, copyright law protects against copying, but not against reverse engineering or independent discovery. John Carmack, founder of id software, clarifies, “It’s important […] to understand the difference between a software patent and the copyright because copyrights protect you in all the important ways that you really need to be protected.” Copyright protects developers from piracy and people stealing code, whereas patents prevent new solutions to problems in software (Carmack, 1997). In essence, programmers claim that intellectual property law should treat what they produce more like writing (protected by copyright) than engineering (protected by patents).
One argument against software patents that relies on notions of code as writing rests on the First Amendment. Logie (2005) describes T.K. Herrington’s argument in Controlling Voices: the debates about intellectual property and what we can do with it or say about it become, at a certain point, about the First Amendment. Is code a protected form of speech? Not always: the DMCA disallowed distribution of the deCSS code (which allowed users to unencrypt certain DVDs), despite arguments that it was a protected form of expression under the First Amendment.
 But sometimes code is protected speech. Daniel Bernstein, a graduate student at UC-Berkeley who worked on encryption methods, could not publish nor present his work under U.S. laws that limited non-governmental use of high level encryption, so he sued the State Department for clarification of the law. In Daniel Bernstein v. U.S. Department of State, et al. (1997), the court ruled that the State Department’s regulations were in violation of the First Amendment. In other words, math was a form of free speech that could not be restricted by the government (Klemens, 2006).

In 1991, the USPTO established an Advisory Commission on Patent Law Reform that was to consider software patents. When they invited public comments, Phillip Salin, President of the American Information Exchange Corporation, submitted a brief claiming that software as a form of protected speech. He wrote,
That software patents are a severe violation of the rights of speech of programmers has not yet been widely recognized; this is perhaps in part because most lawyers, judges and politicians are still insufficiently knowledgeable regarding computers to realize that writing a computer program is in fact a form of writing, not significantly more arcane than writing music, mathematics, scientific papers, or for that matter, laws. All of these forms of speech, including writing programs, deserve full protection under the First Amendment.

In his statement, Salin (1991) concentrates on a process theory of software writing, arguing that it is a form of expression requiring invention and revision. He also claims that software is communication between a programmer and an audience through the intermediary of the computer, and that restricting that communication is a form of “censorship of the work of over 1,000,000 employed writers of computer software, along with the several million additional amateur writers of computer software.”
Another argument against software patents suggests that contexts for the composition of code are more similar to those for writing than those for activities traditionally protected by patents, such as chemistry or engineering. Klemens (2006) points out that the software industry is highly decentralized; businesses of all types often have teams of programmers that maintain the software and hardware upon which the company’s work depends. Beyond business, thousands of people write their own code to put up webpages, customize programs, or do design work in such programs as Adobe’s Photoshop. Garfinkel, Stallman and Kapor (1991) argue that programmers produce too much and too varied code for it to be practically governed by patent law; what they produce is on a different scale than teams of chemists working at universities and publishing primarily in academic journals. Prior art for software could be located in manuals, academic papers, the Internet, closed-code proprietary software, in-house business programs and even people’s home computers—in other words, too many places to be feasibly searched.
Lessig (2001) performs a simple marginal cost analysis: before the Web, the transaction costs of licensing through copyright and patents was just a cost of doing business to large publishers or corporations—they were the only ones playing that game anyway. But the Web makes more opportunities for individuals and smaller groups to make and publish creative works—software included—and the marginal costs for individuals to check for potential patent infringement are substantially more than for larger corporations. Even the CAFC’s In Re Bilski decision notes how a radically altered context for software composition may force the court to reconsider established common law patent tests: “we agree that future developments in technology and the sciences may present difficult challenges to the machine-or-transformation test, just as the widespread use of computers and the advent of the Internet has begun to challenge it in the past decade.”
Like writing text and writing math, writing code has a relatively low barrier to entry, low capital costs, and it is potentially able to be a more generalized skill. Computers are still not universally accessible (Banks, 2006), but they are widely available, and increasingly so all the time. Programs such as Nicholas Negroponte’s One Laptop Per Child (OLPC) posit computer access as a right, and the OLPC includes a code writing environment. Are Brazilian children receiving an OLPC expected to be wary of patent infringement when they write code? Salin (1991) relies on an idea of programming as a mass literacy in order to make this point:
Writing programs today is no more esoteric than writing prose once was. [...] Until a few hundred years ago, literacy was a rarity. Acquiring the ability to write prose took training. It still does, but nowadays we teach writing to everyone in schools [...] There are now millions of individuals in the U.S.A. who know how to write a computer program. It is an absurdity to expect those millions of individuals to perform patent searches or any other kind of search prior to the act of writing a program to solve a specific problem.

As the cost of computers drop and the literacy of computer programming becomes more widespread, we cannot expect the myriad writers of software all to have a catalog of software patents in their head.

That a literacy with computer programming may become widespread, and that it is advantageous for educators to encourage such a trend is an argument made by scholars as diverse as programming pioneer Alan Perlis (1964), educational theorist and mathematician Seymour Papert (1980), and former head of Carnegie Mellon’s Computer Science Department, Jeannette Wing (2006). The histories of writing and math both yield a number of resource-poor writers and mathematicians such as Frederick Douglass, the writer, or Srinivasa Ramanujan, the self-taught mathematician, who were able to practice their skill to the great benefit of society. Patent law now throws obstacles in the way of the future Douglasses and Ramanujans of programming because it posits the context of software writing to be like engineering or chemistry, with high investment costs and centralized publishing venues. However, as computer code literacy becomes more widespread and decentralized, the compositional context for computer code becomes more akin to writing than engineering.
4. Three Programmers’ Perspectives
IBM is unlikely to threaten Brazilian child programmers with their patent portfolio. Yet the existence of software patents and potential danger of infringement does shape the compositional environment of many programmers. In this section, we will take a closer look at three programmers working in very different contexts (corporate, freelance, and open source) to see how software patent protection affects their composition processes. Each of these programmers—John Carmack (a corporate game programmer), Jason Laughlin (a freelance/independent game programmer), and Bob Jacobsen (a programming lead on an open source project)—has had to adjust his code composition practices in attempts to avoid patent infringement. These adjustments have variously led to inferior code, a resistance to disclosing information, or a threatened community of hobbyist programmers.

John Carmack, co-founder of id Software and widely viewed to be one of the most innovative programmers working in computer games today, has consistently and vociferously protested software patents. He told Alex St. John in a1997 interview that when lawyers were encouraging him to patent his programming techniques,

I delivered an ultimatum that said if id Software patents anything, they’re going to be doing it without me because I will leave. And the fallout from that was not pretty. Everybody was pissed off at me […]. But that was something I felt strongly enough about that I, quite literally, would have left the company.
Although Carmack has been uniquely productive at pushing graphics programming to the limits—much of the success of id’s games such as Doom, Quake and their sequels can be attributed to his cutting-edge techniques—he refuses to go the “business world” route and protect those techniques with patents. In line with his refusal to patent his techniques, Carmack has routinely released code from id’s games as open source to encourage people to learn from it and modify it for their own purposes.

In his moral objections to software patents, we can see the ideological differences Carmack sees between himself as a creator and the business interests with which his company must contend:

It’s something that’s really depressing because it’s so horribly wrong for someone who’s a creative engineering type to think about patenting a way of thinking. Even if you had something really, really clever, the idea that you’re not going to allow someone else to follow that line of thought... All of science and technology is built standing on the shoulders of the people that come before you. Did Newton patent calculus and screw the hell out of the other guy working on it? It’s just so wrong, but it’s what the business world does to things, and certainly the world is controlled by business interests. And technical idealists are a minority, but it doesn’t mean that I have to drag myself to do things that I don’t consider right. (Carmack, 1997)
Like Carmack, independent game designer and programmer Jason Laughlin finds software patents morally reprehensible. Laughlin has worked on a number of popular commercial games and now works on web-based Flash games; he considers his current programming habits and lifestyle similar to an author of fiction in that he writes code for independent projects then later seeks publishers to support his work. When asked in a personal interview whether he had thought about patenting any of his programming techniques, he replied:

For all I know there could very well be things that are patentable in what I’ve come up with. But the thought that I would put that out there, patent it, and then act as a troll at a bridge for anyone who wants to make good things, which I would otherwise enjoy using, there’s just something…I don’t know, there something contemptible, but even worse than that. I think that you have to be able to lie to yourself in a really profound way to be able to do that. […] It might be legal, but when so much comes before where you are that is bigger and more important that you get for free because that’s just how the diffusion of information works—there’s just something pathetic about saying “everything that came before me I deserve to have for free and now I deserve free money for the tiny little stupid thing I added on top of that.” I don’t think the system can work that way.

Laughlin’s use of the word “troll” is frequently echoed in debates about software patents on technology-centered online forums such as Slashdot and Reddit: Programming, and reflects the revulsion many programmers seem to feel about business interests that seek to profit from rather than add to innovations in code.
From the Carmack’s and Laughlin’s “technical idealist” perspective, patents obstruct creativity; it is more interesting to make fun games and solve problems than to profit from their solutions. Laughlin describes a desire to be free to design at a macrolevel:
I’m trying to solve problems at the game scope rather than necessarily down in the weeds of the ‘particular technique’ scope, so from that perspective, patents are a thing that get in the way. They mean that instead of trying to solve the game problem, you’re busy trying to solve the particular technique problem.

In other words, the business and engineering assumptions behind patents threaten to interrupt Laughlin’s creative process of game design. He notes, like Carmack elsewhere, that people can do amazing things with the technology of programming if artificial restrictions are not imposed: “I don’t know, maybe some of this too is very programmery / game-designery of me, but I have nearly infinite faith that […] if you just let smart people with good intentions solve hard problems and get out of the way, I have almost utopian beliefs about what can be achieved.”
These utopian beliefs that drive “technical idealists” not only make patents morally offensive to them, but they can also lead them to quixotically attempt to handle patent concerns on their own. Bob Jacobsen, a UC-Berkeley physics professor who leads the open source JMRI (Java Model Railroad Interface) project, explains that this characteristic idealism of hobby programmers can make them more susceptible to problems with software patents:

Deep in their heart, software writers think they know how to do anything. Software is so malleable that anybody who gets good at this really honestly believes that they can do anything. And that therefore writing a patent shouldn't be any harder than writing a program. This, of course, is immensely untrue, but that doesn't keep them from thinking it. So, the solution that a lot of open source people have right now is to write their own patents—which are awful. They are indefensibly bad. […] Software is written by writing something, finding the bugs, writing something, fixing it, finding the bugs, fixing it, finding the bugs, fixing it, and two years later, you've got it. That does not work, at any level, in the legal field.

In a corporate or university setting, Jacobsen (who is named in several non-software patents for his research) notes that patent applications are handled by legal experts. But in open source—a space where the online context for code composition is very similar to the online context for textual composition in that they are both highly distributed and often uncompensated—patents are handled by hobbyists, if they are handled at all. In other words, programming can be a widely distributed skill that benefits people at many different skill levels, as it does in open source software, whereas hobbyist-level legal skills can be dangerous.
Software patents can be offensive to programmers’ creative and moral senses, but they also can circumscribe the techniques programmers can use, particularly since patents bar independent invention. In 2004, id Software was poised to release the highly anticipated game Doom 3 when Creative Labs, a company that makes sound card technology and works with id in the development process of their games, asserted that they held a patent on a shading technique that Carmack had independently come up with for Doom 3.
 Ironically, the programming technique had been dubbed “Carmack’s Reverse” because he was the one to popularize the particular, reversed way to calculate shadows on objects in the game. Although prior art existed for Creative Labs’ patent and Carmack had been unaware of it when he developed his own technique, the game’s release was held up by Creative Labs’ threat (Gibson, 2004). As Carmack had previously asserted, “Patents are supposed to help promote invention and allow beneﬁts to accrue to inventors. By most deﬁnitions, I would be considered an ‘inventor’ of sorts, and patents sure as hell aren’t helping me out” (Carmack, 2000). Carmack had already begun rewriting the code to use a different shading technique (although at the cost of some speed in the game) when id and Creative settled the dispute (Gibson, 2004). In Carmack’s case, a patent seems to have curtailed innovation rather than encourage it.
Patent law is also designed to encourage disclosure of new inventions, but for Laughlin, it discourages it. He notes that in game design, he can use a lot of techniques that are not readily apparent to players, but their opacity can contribute to a fun experience in the game. Revealing those techniques by talking about them or opening his source code can make him more vulnerable to accusations of patent infringement:

the fact that I don’t know all the millions of patents that have been written—and can’t know—means that I’m always much safer not helping anybody and not communicating, than if I opened up my mouth or if I opened up the source. Both of those things make me a much bigger, much much bigger target.

So instead of sharing his hidden game innovations, Laughlin keeps his mouth shut and his code closed. Clearly, the goal of the patent system to circulate knowledge more freely is not working in his case.

Open source projects are uniquely vulnerable to patent infringement claims because they do what Laughlin deliberately avoids: they talk about their techniques in publicly available forums, and they make their code available to everyone. Additionally, Lessig (2001) points out the complicated mechanics of licensing a patent to an open source project: “Who knows who they are? Who knows how many users need to be sanctioned? [...] Thus patents tilt the process to harm open code developers” (p. 213). Open source projects rarely have patent portfolios of their own to counter accusations of infringement or to assert that they performed those techniques first (Guibault & van Daalen, 2006). The organization of open source projects is generally loose, and like Laughlin the independent programmer, they lack the resources of lawyers and capital that are required to file for patents. Proof of prior art may be in the code, but if it is not in case law or in writing, it is less accessible for the purposes of legal defense.
If software patents were never prosecuted, or even if their prosecution were limited to larger corporations who could work out royalties or cross-licensing deals, then they would be of no consequence to individual programmers. But for Jacobsen, who is currently embroiled in a patent lawsuit over techniques used in the open source model railroad project he leads, the impact of software patents on his code-writing hobbies are profound. Matthew Katzer, a former member of the JMRI community, obtained a patent on some of the techniques used in the open source project, despite the fact that prior art exists for those techniques within the version history of the JMRI software itself. Katzer subsequently came after the open source project and Jacobsen in particular with a demand for damages from patent infringement. The legal history of the case is complicated by a countersuit from Jacobsen, cybersquatting accusations, and trademark disputes, which I will not review here. Instead, you may visit the JMRI website (Jacobsen, n.d.), where Jacobsen has opted to keep the case details clearly accessible. He connects his openness about the case to principles he sees as central to open source software and academic research in physics: “the idea of doing everything in daylight, the more information people have, the better decisions they can make.” Because of his steadfast attachment to these principles, even when contrary to advice from his lawyers, Jacobsen has become a small hero to the anti-software patent community. His case has become a touchstone for debates about software patents for open source projects in particular, as the Slashdot and Groklaw communities root for him to prevail against Katzer, the “patent troll” (e.g, Jones, 2006; “On Software Patent Lawsuits,” 2006).

Although the principle of “doing everything in daylight” is common to Jacobsen’s approach to his case and the JMRI project, Jacobsen draws a distinct line between his disclosure of the case, which is not designed to allow others to participate in it, and his desire to encourage participation in the open source project. He cites the active and diverse forms of participation in the JMRI project as one of its strengths:

JMRI is successful at attracting developers [because…] the things that it does [are] really sortof cool—it makes trains do stuff. It makes a physical object move. There's a growing list of people who build little robots because the technology is becoming more and more available. I've got a 7 year old who likes to do that. And it’s really becoming more accessible as computing becomes more accessible.
With project participants such as retired dentists, former DEC Corporation programmers, 7 year olds, teenagers, and nuclear physicists at UC-Berkeley, JMRI is a window on the diversity of people now coding for open source projects.

This diversity of programmers includes game designers such as Laughlin and Carmack as well, who, like Jacobsen, compose their software in contexts that do not seem to be well-suited to patent law. Pointing out the differences between the contexts in which “software engineers” program and what he as an independent game designer does, Laughlin says, “For games especially, it’s barely even obvious that monetary incentives from copyright are even necessary for people to make things. So the idea that patents [would be necessary to reward innovation]?—I’ve seen nothing to indicate that.” Corporate software engineering, such as what is practiced by IBM and Microsoft (both owners of massive patent portfolios), may benefit from patent protection. However, software composed in corporate contexts must, by nature of patent law, co-exist—and compete—with the many informal, loosely organized sites of code composition, which puts those independent projects at risk.
5. Conclusion

Digital composition teachers and scholars are, admittedly, more insulated than professional or even hobbyist programmers from software patent infringement. For public relations as well as financial reasons, IBM is unlikely to prosecute a single composition teacher or even a university for low grade patent violation through distribution, use, or writing of infringing code.
 However, as our scholarly work and our students’ compositions become more dependent on robust and diverse software programs, our exposure to the problems created by software patents increases. Moreover, as the computer blurs the lines between modalities of composition, code is no longer reserved for specialists; our more technically sophisticated works already make us into programmers. Code has become infrastructural to the way we compose, and indeed, to the very way that we live our lives. Software mediates almost all of our financial transactions, our communications, and our information outlets and inlets. Behind each of those programs are millions of lines of code written by thousands of professional and hobbyist programmers in hundreds of different languages. Because patent law is nearly impossible for non-specialists to take advantage of or even interpret, it does not mesh well with this decentralized composition scenario.
At the heart of the debates about patenting software are the questions: What is code? What is writing? Where do we draw the line between the two? Computer code is text that enacts processes, and those processes often have more tangible results than textual writing. But as our compositions move beyond text and we now include many different modalities and forms of expression as writing, the line between code and text all but vanishes. As Cummings (2006) writes, “the time has arrived for composition scholars to claim coding as their own. It is writing. Once we are comfortable with that idea, then we will ﬁnd a new arena for the excitement of composition” (p. 442-3). Software patents frame coding as a kind of engineering, and in some cases it is. But coding is also a form of writing. One exciting new area for composition studies is the way that framing coding as writing can provide support for the movement against software patents. Just as Lessig (2001) and others have noted that copyright law no longer fits the remix model of multimodal composition, we can show that patent law no longer fits the current and diverse contexts of code composition.
References
Ballentine, Brian. (2009). Hacker Ethics & Firefox Extensions: Writing & Teaching the 'Grey' Areas of Web 2.0. Computers and Composition Online, Fall 2009. Retrieved 30 Sept 2009 from http://www.bgsu.edu/cconline/Ballentine/ .

Banks, Adam. (2006). Race, Rhetoric, and Technology. Mahwah, NJ: Lawrence Erlbaum.

Bolter, Jay David. (1991). Writing Space: Computers, Hypertext, and the History of Writing (1st ed.). Hillsdale, NJ: Lawrence Erlbaum.

Boyle, J. (1996). Shamans, Software, and Spleens: Law and the Construction of the Information Society. Cambridge, MA: Harvard UP.

Carmack, John. (1997, November 25). John Carmack - The Boot Interview (with Alex St. John). The John Carmack Archive. Retrieved 30 Sept 2009 from http://www.team5150.com/~andrew/carmack/johnc_ interview _1997_John_Carmack__The_Boot_Interview.html.

Carmack, John. (2000, September 18). Knee Deep in John Carmack (interview with Billy "Wicked" Wilson). The John Carmack Archive. Retrieved 30 Sept 2009 from http://www.team5150.com/~andrew/ carmack/johnc_interview_2000_Knee_Deep_in_John_Carmack.html.

Cummings, Robert. (2006). Coding with power: Toward a rhetoric of computer coding and composition. Computers and Composition, (23), 430-446.

Bernstein v. U.S. Department of State, et al. 176 F. 3d 1132 (1997).

DeVoss, Danielle N.; digirhet. (2008). Old + old + old = new: A copyright manifesto for the digital world. Kairos: A Journal of Rhetoric, Technology, and Pedagogy, 12(3). Retrieved 30 Sept 2009 from http://www.technorhetoric.net/12.3/index.html .

Diamond v. Diehr. 450 U.S. 175 (1981).

Durack, Katherine T. (2001). Research opportunities in the US Patent Record. Journal of Business and Technical Communication, 15(4), 490-510.

Durack, Katherine T. (2006). Technology transfer and patents: Implications for the production of scientific knowledge. Technical Communication Quarterly, 15(3), 315-328.

Fisher, Ken. (2004). Microsoft patenting new Office XML format. Ars Technica. Retrieved 29 Sept 2009 from http://arstechnica.com/old/content/2004/01/3336.ars .

Fortune, Ron; Kalmbach, Jim, F. (1999). Letter from the Guest Editor. From Codex to Code: Programming and the Writing Classroom. Computers and Composition, 16, 319-324.

Garfinkel, Simon; Stallman, Richard; Kapor, Mitchell. (1991). Why Patents Are Bad for Software. Issues in Science and Technology, (Fall 1991), 50-55.

Gibson, Steve. (2004). Creative Labs Patent & DOOM 3. ShackNews. Retrieved 29 Sept 2009 from http://www.shacknews.com/onearticle.x/32824 .

Gottschalk v. Benson. 409 U.S. 63 (1972).

Graham, Paul. (2006). Are Software Patents Evil? Paul Graham.com. Retrieved 30 Sept 2009 from http://www.paulgraham.com/softwarepatents.html .

Guibault, Lucie; van Daalen, Ot. (2006). Unravelling the Myth around Open Source Licenses: An Analysis from a Dutch and European Law Perspective. Information Technology and Law Series. The Hague, The Netherlands: TMC Asser Press.

Gurak, Laura. (1997). Technical Communication, Copyright, and the Shrinking Public Domain. Computers and Composition, 14, 329-42.

IBM's Supreme Court Brief Says That Patents Drive Free Software (2009). Slashdot. Retrieved 30 Sept 2009 from http://yro.slashdot.org/story/09/09/03/1616220/IBMs-Supreme-Court-Brief-Says-That-Patents-Drive-Free-Software .

In re Alappat. 33 F. 3d 1526 (1994).

In re Bilski. 545 F. 3d 943 (2008).

Jacobsen, Bob. (n.d.). JMRI Defense: Keeping an Open-Source Project Alive. JMRI.org. Available: http://jmri.org/k/index.html [Accessed: September 30, 2009].

Jacobsen, Bob. (11 Sept 2009). JMRI Project Leader and Professor of Physics, UC-Berkeley. Interview.

Jaffe, Adam; Lerner, Josh. (2004). Innovation and Its Discontents. Princeton, NJ: Princeton U Press.

Jones, Pamela. (2006, May 14). The Model Train Patent Story - Jacobsen v. Katzer et al. Groklaw. Retrieved December 19, 2009, from http://www.groklaw.net/articlebasic.php?story=20060514233436196.

Jones, Pamela. (2009). Professor Hollaar's Amicus Brief in Bilski. Groklaw. Retrieved 30 Sept 2009 from http://www.groklaw.net/article.php?story=20090922030639824.

Klemens, Ben. (2006). Math You Can't Use. Washington, D.C.: Brookings Institution.

Laughlin, Jason. (23 Sept 2009). Independent Game Designer. Interview.

Leblanc, Paul. (1993). Writing Teachers Writing Software. Advances in Computers and Composition Studies. Urbana, IL: NCTE.

Lessig, L. (2001). The Future of Ideas: The Fate of the Commons in a Connected World. New York: Vintage.

Logie, John. (2005). Parsing Codes: Intellectual Property, Technical Communication, and the World Wide Web. In Carol Lipson and Michael Day (Eds.) Technical Communication and the World Wide Web. Mahwah, NJ: Lawrence Erlbaum.

Marino, Mark. (2006). Critical Code Studies. Electronic Book Review. Retrieved 30 Sept 2009 from http://www.electronicbookreview.com/thread/electropoetics/codology.
Nard, Craig A.; Barnes, David W.; Madison, Michael J. (2006). The Law of Intellectual Property. New York: Aspen Publishers.
On Software Patent Lawsuits Against OSS. (2006, June 30). Slashdot. Retrieved December 19, 2009, from http://yro.slashdot.org/article.pl?sid=06/06/30/1258249.

Papert, Seymour. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, Inc.

Parloff, Roger. (2007). Microsoft Takes on the Free World: Microsoft claims software like Linux violates its patents. CNNMoney.com / Fortune Magazine. Retrieved 29 Sept 2009 from http://money.cnn.com/magazines/fortune/fortune_archive/2007/05/28/100033867/index.htm.

Parker v. Flook. 437 U.S. 584 (1978).
Perlis, Alan. (1964). The Computer and the University. In Martin Greenberger (Ed.) Computers and the World of the Future. Cambridge, MA: MIT.

PolR. (2009, November 11). An Explanation of Computation Theory for Lawyers. Retrieved December 19, 2009, from http://www.groklaw.net/article.php?story=20091111151305785.

Rieder, David M. (2008). Scripted Writing() Exploring Generative Dimensions of Writing in Flash ActionScript. In Byron Hawk, David M. Rieder, Ollie O. Oviedo (Eds.) Small Tech: The Culture of Digital Tools (pp. 81-92). Minneapolis, MN: U of Minnesota Press.

Salin, Phillip. (1991). Freedom of Speech in Software (RE: Request for Comments, Advisory Commission on Patent Law Reform [56 FR 22702-02]). Retrieved 11 Jan, 2010, from http://www.philsalin.com/patents.html .

Samuelson, Pamela. (1990). Benson Revisited: The Case Against Patent Protection for Algorithms and Other Computer Program-Related Inventions. Emory Law Journal, 39, 1025-1154.

Samuelson, Pamela. (2007). Software Patents and the Metaphysics of Section 271(f). Communications of the ACM, 50(6), 15-19.

Schonfeld, Erick. (2009). Here Come The Twitter Patent Lawsuits. TechRadium Files The First One. TechCrunch. Retrieved 29 Sept 2009 from http://www.techcrunch.com/2009/08/05/here-come-the-twitter-patent-lawsuits-techradium-files-the-first-one/ .

Selfe, Cynthia; Selfe, Richard. (1994). The Politics of the Interface: Power and its Exercise in Electronic Contact Zones. College Composition and Communication, 45, 480-504.

Shiva, Vandana. Patents: Myths and Reality. New Delhi: Penguin Books, 2001.
Smith, Andy. (2009). #songsincode - Birthing a Trend. Retrieved 30 Sept 2009 from http://docs.google.com/View?id=dcg768xk_4ff83ftcd .

Stallman, Richard. (2009). How the Swedish Pirate Party Platform Backfires on Free Software. GNU Operating System. Retrieved 30 Sept 2009 from http://www.gnu.org/philosophy/pirate-party.html.

State Street Bank and Trust v. Signature Financial Group. 149 F.3d 1368, 1375 (1998).

Warshofsky, Fred. (1994). The Patent Wars. New York: John Wiley & Sons, Inc.

Westbrook, Steve (Ed.). (2009). Composition & Copyright. Albany, NY: SUNY Press.

Wing, Jeannette. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.
� 1. Bob Marley’s No Woman, No Cry in generic C/C++ syntax [via @librarythingtim]; 2. Europe’s The Final Countdown using a counting convention common to many programming languages [via @uberTof]; 3. Def Leppard’s Pour Some Sugar on Me in PHP [via @petdance]; 4. Ray Parker, Jr.’s Ghostbusters in C [via @numptygeek]; 5. Michael Jackson’s Black or White in generic C/C++ syntax, using hexadecimal representations for the colors black and white [via garysbasement.com]; 6. Stealers Wheel’s Stuck in the Middle with You using css positioning syntax [via garysbasement.com]

� For more information on the history and application process of U.S. patents, visit the USPTO’s website: � HYPERLINK "http://www.uspto.gov/web/offices/pac/doc/general/" �http://www.uspto.gov/web/offices/pac/doc/general/� . See also Durack, 2006.

� This hypothetical practitioner who could reproduce the invention is often called the PHOSITA, or “person having ordinary skill in the art” to which the patent pertains.

� See Durack, 2001 for an interesting discussion of patents as “a kind of moral and social barometer of technological change” (p. 495).

� See, for instance, the incredulous response to IBM’s amicus brief for the Supreme Court’s upcoming hearing of Bilski claiming that software patents help free software (“IBM’s Supreme Court Brief,” 2009).

� In a May 16, 1991 confidential memo to senior executives at Microsoft, CEO Gates wrote:

“If people had understood how patents would be granted when most of today's ideas were invented and had taken out patents, the industry would be at a complete standstill today. I feel certain that some large company will patent some obvious thing related to interface, object orientation, algorithm, application extension, or other crucial technique.” He went on to express concern that Microsoft did not, at that time, have patents, and recommended that they should acquire some as soon as possible (Warshofsky, 1994, p. 170).

� To make his point clear, Klemens (2006) boldly prints the deCSS code with the caption “The deCSS Code: Printing This Figure Is a Felony,” juxtaposing it with instructions for a fertilizer bomb such as the one used in the Oklahoma City bombing and a caption reading “How to Make a Fertilizer Bomb: This Figure Is Protected by the First Amendment” (p. 126).

� The argument that software is math and therefore unpatentable is also popular among programmers and legal scholars. The website Groklaw, which covers court cases and laws related to computer technology, recently published “An Explanation of Computation Theory for Lawyers” by PolR, a self-described “computer professional with over 25 years of experience [with] no legal expertise beyond what I acquired reading Groklaw” (PolR, 2009). In this 37 page document, PolR describes software in terms of computation theory, “an area of mathematics that overlaps with philosophy,” and asserts, like Salin, that if lawyers knew more about software, they would not see it as protectable by patent law. Carmack also expresses his frustration with the technological ignorance implied in trivial software patents:

To laymen, all of programming is alchemy, and trying to convince them that any given software patent is “obvious” or “clearly follows from the problem” is really tough. […] The only scenario that I can see would be to have enough truly, blatantly stupid patents prosecuted that someone could make a stand in congress and show the public in an understandable way just how wrong it is. (Carmack, 2000)

Programmers frequently assert that patents are awarded to procedures that have long been accepted practice, and therefore appear to be novel only to outsiders or those less familiar with code.

� Patent # 6,384,822 issued May 2, 2002, and can be found by searching the USPTO’s website, � HYPERLINK "http://patft.uspto.gov/" �http://patft.uspto.gov/� .

� Companies less concerned with public relations, such as the one suing Bob Jacobsen, are a wild card in this situation and may pose a greater threat.

