
Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

1	
  

Computer programming & literacy: an annotated bibliography 
 
This list was assembled by Annette Vee, June 2012, is licensed under a Creative 
Commons Attribution-NonCommercial 3.0 Unported License, and is available here: 
http://www.annettevee.com/blog/2012/06/07/proceduracy-annotated-bibliography/   
And here: http://www.scribd.com/doc/96306140/Computer-Programming-and-Literacy-An-
Annotated-Bibliography  
	
  
 
With the recent uptick in the “everyone should code” movement, it seems that everyone’s 
now talking about computer programming as a new form of literacy. The terms by which 
people refer to the concept vary, but the central idea is shared: computational literacy; 
computational thinking; procedural literacy; proceduracy; computer literacy; iteracy. I’ve 
been working in this area for a few years now from the perspective of literacy studies, and 
I thought it might be a good time to share an annotated list of resources that I’ve found 
helpful in thinking through computer programming as a literacy. Chris Lindgren assembled 
a bibliography before me, and there’s a lot of overlap here. 
(http://www.clindgrencv.com/resources/proceduracy-bibliography/) I’m inclined to say that 
the overlap points toward a burgeoning canon, although that recognition comes with the 
requisite wincing about a lack of gender/race diversity here. 
 
I’ve listed just online or print texts, and the list tends toward the academic and historical. 
My Diigo library, assembled over the last few years with the tag “proceduracy”, is a better 
resource for public discussions about computer programming as a literacy: 
http://www.diigo.com/user/advee77/proceduracy  
 
I decided to list these in rough order of importance, which is incredibly subjective. I’ve 
broken the central sources up into a few categories: Really Important Stuff; Blogs & Online 
Writings; Dissertations; Work in English Studies. This is not to claim that there aren’t 
overlaps (e.g., something can be important and online!) but just to organize it a bit. After 
the central list of sources for programming and literacy, I’ve included a list of related work 
that people might want to read in computer history, pop books, code studies, and 
composition & rhetoric.  
 
Of course, the whole list is partial and biased! I welcome additions and reactions in the 
comments or via other contact media— email: annettevee@gmail.com twitter: @anetv 
website: www.annettevee.com . 
 
 
Really Important Stuff  

Papert, Seymour: Mindstorms (1980).  
Papert was a student of Jean Piaget and the main designer of the Logo 
programming language. In this book, he proposes that computers can be “objects 
to think with,” that is, they can scaffold complex thinking about processes. He is 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

2	
  

focused on formal education and children, in particular. The book is a wonderful, 
inspiring read about how children might be able to play and create with computer 
programs of increasing complexity.  
 
The actual implementation of Logo didn’t work in the way that Papert had hoped, 
and in response to the critique of the ineffectiveness of Logo in schools, he 
followed up by drawing a distinction between injecting a design into school, and 
growing a culture around it. Early criticism of LOGO (e.g., Pea and Kurland, 1984) 
assumed that Logo had failed because they weren't seeing the big picture; it "was 
in the spirit of those who dismissed the Wright brothers' flight on the grounds that a 
hop of 22 feet was of no serious importance."  
Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New 

York: Basic Books, Inc., 1980. Print. 
Papert, Seymour. “Educational Computing: How Are We Doing?” T H E Journal  

24.11 (1997). t|h|e journal. Web. 23 Apr 2010. 
 
Wing, Jeannette: “Computational Thinking.”  

Former chair of computer science at Carnegie Mellon University and current 
administrator at NSF, Jeannette Wing argues forcefully for a focus on 
“computational thinking” across all disciplines in the university. This widely-cited 
thought-piece is short and provocative. Wing’s phrase “computational thinking” has 
perhaps enjoyed the most widespread uptake of all of the recent terms about 
computer programming as a kind of literacy, as evidenced by the “computational 
thinking” programs at Carnegie Mellon University and Microsoft. 
Wing, Jeannette. (2006). Computational thinking. Communications of the ACM, 
49(3), 33–35. 

 
Mateas, Michael. “Procedural Literacy.”  

This article is focused on new media practitioners, but Mateas gestures outward as 
well: “In fact, one can argue that procedural literacy is a fundamental competence 
for everyone, required full participation in contemporary society, that believing only 
programmers (people who make a living at it) should be procedurally literate is like 
believing only published authors need to learn how to read and write.” Great, 
tightly argued and highly-quotable piece from a computer scientist and co-author of 
the Façade game. 
Mateas, Michael. “Procedural Literacy: Educating the New Media Practitioner.” On 

The Horizon. Special Issue. Future of Games, Simulations and Interactive 
Media in Learning Contexts 13 1 (2005): 1-15. Print. 

 
Perlis, Alan. “The Computer and the University.”  

This is the early piece that Mateas analyzes in his “Procedural Literacy” essay. As 
far as I know, as the proceeds from an MIT conference in 1961, it’s the earliest 
articulation of computer programming as parallel to literacy.  
 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

3	
  

Perlis argues for a course that would introduce all undergrads to the computer 
“because of the universal relevance of the computer to our times” (188). In fact, it 
should be central to the university mission: “The first and most critical stage of the 
computer's role in the university [...] is to train entering students in the theory of 
computation through the development of the concepts of programming.” He 
outlines some basic principles of programming that haven’t changed since then, 
such as: “the definition of complex processes by rational construction from simpler 
processes already given” (191). The discussion afterward between him and Peter 
Elias is also fascinating (for instance, Elias claims that language development will 
peak and end in just ten years from then!). 
Perlis, Alan. “The Computer and the University.” Computers and the World of the 

Future. Ed. Greenberger, Martin. Cambridge, MA: MIT, 1964. Print. 
 
diSessa, Andrea. Changing Minds.  

A wonderful book about “computational literacy,” or programming to learn other 
subjects, by a former student of Seymour Papert. He argues that programming is 
headed toward being a new mass literacy, and he’d like to promote that. His 
central argument is (italics in original):  

Computers can be the foundation of a new and dramatically enhanced 
literacy, which will act in many ways like current literacy and will have 
penetration and depth of influence comparable to what we have already 
experienced in coming to a mass, text-based literacy. 

 
He proposes three “pillars” of literacy (social, cognitive and material), and focuses 
on the material affordances of programming. He claims that a “material 
intelligence” can become a literacy when it becomes infrastructural to everyday 
life, and the ease of use of inscription systems can be the determining factor in 
whether something becomes infrastructural (he gives the example of Liebniz’s 
more intuitive notation for calculus vs. Newton’s). The body chapters focus on 
teaching physics with a programming language developed by diSessa (Boxer), but 
the intro and much of the book are incredibly useful for thinking about 
programming as a kind of literacy. 

diSessa, Andrea. Changing Minds: Computers, Learning and Literacy. Cambridge, 
MA: MIT Press, 2000. Print. 

 
Bogost, Ian. Persuasive Games.  

This whole book is a great read and essential for any humanist interested in code, 
or anyone interested in studying video games—but the chapter on “Procedural 
Literacy” is what earns it a place on this list. Bogost doesn’t emphasize coding per 
se, but sees the procedural aspects of games as a way into a kind of procedural 
literacy that has a lot in common with what others on this list describe: “procedural 
literacy entails the ability to reconfigure concepts and rules to understand 
processes, not just on the computer, but in general.”  
 
Bogost addresses James Paul Gee's work on what games teach: understanding 
how to move in semiotic domains. Bogost argues games teach particular and 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

4	
  

contextual domains and mentions Gee's admission that what games really teach 
(at least games right now) is how to play that game. Like Gee, Bogost is interested 
in the potential of games to teach: “where the game you learn to play has a greater 
and more meaningful coupling with real experience” (240). He proposes 
procedural literacy as an entry to this. Bogost’s website offers a nice summary of 
the book http://www.bogost.com/books/persuasive_games.shtml .  
Bogost, Ian. Persuasive Games: The Expressive Power of Videogames. 

Cambridge, MA: MIT, 2007. Print. 
 
Kay, Alan. “User Interface” and “Personal Dynamic Media.” 

At Xerox PARC, Kay was the mind behind Smalltalk, which was an important and 
early object-oriented computer language (the first one to be called that because it’s 
Kay’s term). He was also the mind behind laptop design, which he describes in the 
article with Adele Goldberg, “Personal Dynamic Media.” This article is essential 
reading for anyone interested in the history of personal computing, but his article 
on “User Interface” is more relevant to thinking about computer programming as a 
literacy. In it, he writes,  

“The ability to 'read' a medium means you can access materials and tools 
created by others. The ability to 'write' in a medium means you can 
generate materials and tools for others. You must have both to be literate. 
In print writing, the tools you generate are rhetorical; they demonstrate and 
convince. In computer writing, the tools you generate are process; they 
simulate and decide." (193)  

Based on McLuhan’s argument about media (which he admits is faulty), Kay 
claims, "if the personal computer is truly a new medium then the very use of it 
would actually change thought patterns of an entire civilization" (193). 
Kay, Alan. “User Interface: A Personal View.” The Art of Human-Computer 

Interface Design. Ed. Laurel, Brenda. Reading, MA: Addison-Wesley 
Publishing Company, Inc., 1990. 191-207. Print. 

Kay, Alan, and Adele Goldberg. “Personal Dynamic Media.” The New Media 
Reader. Mar 1977. Eds. Wardrip-Fruin, Noah and Nick Montfort. 
Cambridge, MA: MIT Press, 2003. 393-404. Print. 

 
Knuth, Donald. Literate Programming.  

The influential computer scientists (and developer of LaTex word processing 
program) Donald Knuth famously argued that computer science should be thought 
of as more of an art than a science. Here’s the gist of his argument about “literate 
programming”:  

Programming is best regarded as the process of creating works of 
literature, which are meant to be read. […] Literature of the program genre 
is performable by machines, but that is not its main purpose. The computer 
programs that are truly beautiful, useful and profitable must be readable by 
people. So we ought to address them to people, not to machines. All of the 
major problems associated with computer programming—issues of 
reliability, portability, learnability, maintainability, and efficiency—are 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

5	
  

ameliorated when programs and their dialogs with users become more 
literate. 

Knuth’s ideas expressed here have been very influential, along with the magisterial 
The Art of Computer Programming 
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming ) 

 
Knuth, Donald. Literate Programming. CSLI Lecture Notes. United States: Center 

for the Study of Language and Information, 1992. Print. 
 

Bush, Vannevar. “As We May Think.”  
This is probably the most important historical essay about computers. In it, the 
WWII scientist Bush imagines what computers will do to change our lives: “The 
world has arrived at an age of cheap complex devices of great reliability; and 
something is bound to come of it.” He proposes the Memex, a conceptual ancestor 
to library databases and the Internet, and an early articulation of the computer as 
an extension of the human mind. For the scholar, the Memex is “an enlarged 
intimate supplement to his memory.”  
Bush, Vannevar. “As We May Think.” The Atlantic. 1945. 

http://www.theatlantic.com/doc/194507/bush/ 
 
Licklider, J.C.R. “Man-Computer Symbiosis” & “The Computer as Communication 

Device” 
  Licklider doesn’t exactly talk about literacy here. But he does talk about the ways 

that humans and computers can work together, rather than thinking of the 
computer as an eventual replacement for human intelligence: “men are noisy, 
narrowband devices, but their nervous systems have very many parallel and 
simultaneously active channels. Relative to men, computing machines are very 
fast and very accurate, but they are constrained to perform only one or a few 
elementary operations at a time.”  

   
  His co-authored 1968 “Computer as a Communication Device” is also wonderful, 

as he basically describes the idea of the Internet. In that essay, he claims that 
when people do their informational work “at the console” and “through   the 
network,” telecommunication will be as natural an extension of individual work as 
face-to-face communication is now (40). Perhaps tongue-in-cheek, he claims that 
life will then be happier and there will be no more unemployment because “the 
entire population of the world [will be] caught up in  an infinite crescendo of on-line 
interactive debugging.”  
Licklider, J.C.R. “Man-Computer Symbiosis.” IRE Transactions on Human Factors 

in Electronics 1 1 (1960): 4-11. ACM Digital Portal. Web. 23 Apr 2010. 
Licklider, J., & Taylor, R. (1968). The computer as a communication device. 

Science and technology, 76(2), 2. 
 
 

 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

6	
  

Resnick, Mitchel, et al. “Scratch: Programming for All.”  
Nice, short introduction to the philosophy and implementation of the Scratch 
programming language, which is the spiritual inheritor of Logo’s legacy. 
Resnick, Mitchel, et al. “Scratch: Programming for All.” Communications of the 

ACM 52.11 (2009): 60-67. ACM Digital Portal. Web. 23 Apr 2010. 
 

Nelson, Ted. Computer Lib/ Dream Machines.  
What a weird and wonderful book! Ted Nelson is the progenitor of hyperlinks, 
which inspired Tim Berners-Lee’s design of the Web. Nelson first self-published 
this crazy, illustrated, and half-handwritten book and then (ironically) Microsoft 
republished it in a revised form (which is the copy I own and quote from). It’s really 
hard to get ahold of, but I recommend trying!  
 
Nelson describes himself as a fan rather than an “insider” for computers, but 
because he recognizes the importance of them, he wants them to be more 
accessible—he wants them to be “liberated.” He portrays “computer people” as 
knowledge-hoarders, eager to keep the powerful device to themselves. He's not 
speaking specifically about programming, although computer usage was closer to 
direct programming when he was talking about this in 1974. Here’s a long quote 
that I love:  

Somehow the idea is abroad that computer activities are uncreative, as 
compared, say, with rotating clay against your fingers until it becomes a 
pot. This is categorically false. Computers involve imagination and creation 
at the highest level. Computers are an involvement you can really get into, 
regardless of your trip or karma. They are toys, they are tools, they are 
glorious abstractions. So if you like mental creation, toy trains, or 
abstractions, computers are for you. If you are interested in democracy and 
its future, you'd better understand computers. And if you are concerned 
about power and the way it is used, and aren't we all now, the same thing 
goes. 

He argues that people should rise up and demand that the computers and 
computer people don't control them: “THIS BOOK IS FOR PERSONAL 
FREEDOM, AND AGAINST RESTRICTION AND COERCION...COMPUTER 
POWER TO THE PEOPLE. DOWN WITH CYBERCRUD!” Fun reading! 
Nelson, Theodore. Computer Lib / Dream Machines. Redmond, WA: Microsoft 

Press, 1980. 
 
Brooks, Frederick P. The Mythical Man-Month.  

This doesn’t address literacy per se, but is so central to any discussion about 
programming and writing that it’s on this list. Brooks, the main architect in the IBM 
OS/360 project, writes about modularity and scheduling large software projects, 
which tend to be extremely complex and impossible to predict. This should be read 
in the context of computer histories that cover this “software crisis” of the 1960s 
(say, Campbell and Aspray, or Ensmenger, see below). Brooks considers “the 
craft of system programming” and explores: why is programming fun? 1) The joy of 
making things, 2) the joy of making things for other people, 3) fascination with 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

7	
  

interlocking parts, 4) you can always be learning because there are many non-
repeatable tasks in programming. Perhaps the most-often quoted part of this book 
(at least in the humanities) is this bit:  

there is a delight in working in such a tractable medium. The programmer, 
like the poet, works only slightly removed from pure thought-stuff...Few 
media of creation are so flexible, so easy to polish and rework, so readily 
capable of realizing grand conceptual structures (5). 

But, Brooks writes, programming is different from poetry: “Yet the program 
construct, unlike the poet's words, is real in the sense that it moves and works, 
producing visible outputs separate from the construct itself” (7). 
Brooks, Frederick P. The Mythical Man-Month: Essays on Software Engineering. 

Reading, MA: Addison-Wesley Publishing Co., 1982. Print. 
 

Nardi, Bonnie. A Small Matter of Programming.  
An early 1990s-visionary book. Nardi is interested in “end-user programming” 
(EUP) which is basically the ability of end-users to modify and control the software 
they use. Her research group’s goals for EUP are lofty: for EUs to “perform their 
work more efficiently, effectively, and pleasurably” but also because they can (no 
guarantees) learn the “nature of the machine—its possibilities and limits” through 
EUP. (3) The beginning is the most useful for explorations of code and literacy. 
Some good quotes from it: “While computer agents will be appropriate and useful 
for many tasks, such agents do not begin to cover the extent of what end users will 
be able to do with their computers when they have suitable environments for 
creating their own applications.” (3) And her political focus is interesting to me: 
EUP is important “so that the many decisions a democratic society faces about the 
use of computers, [4] including difficult issues of privacy, freedom of speech, and 
civil liberties, can be approached by ordinary citizens from a more knowledgeable 
standpoint.” (3-4) There’s a lot about user interfaces here though, and much less 
about politics. 
Nardi, Bonnie. A Small Matter of Programming: Perspectives on End User 

Computing. Cambridge, MA: MIT, 1993. Print. 
 
Rushkoff, Douglas. Program or be Programmed. 

I’m going to be honest: I found this book disappointing. It’s got a provocative title 
and an interesting introduction and conclusion, but everything in-between was thin. 
But I like the way he talks about shifts in paradigms for participation in democracy, 
and that there are things one can’t even conceive of if one doesn’t know how to 
program. In addition to the title, there are some good, quotable passages. To wit:  

In the emerging, highly programmed landscape ahead, you will either 
create the software or you will be the software. It's really that simple: 
Program or be programmed.  Choose the former and you gain access to 
the control panel of civilization. Choose the latter and it could be the last 
real choice you get to make. 

And: 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

8	
  

Just as words gave people the ability to pass on knowledge for what we 
now call civilization, networked activity could soon offer us access to 
shared thinking--an extension of consciousness still inconceivable to most 
of us today. The operating principles of commerce and culture--from supply 
and demand to command and control--could conceivably give way to an 
entirely more engaged, connected, and collaborative mode of participation. 

If you’re interested in the idea of programming and literacy, read it—but maybe on 
the stairmaster like I did. Or you can check out his short article on Huffington Post, 
which promotes the book and outlines its argument: 
http://www.huffingtonpost.com/douglas-rushkoff/programming-
literacy_b_745126.html  

 Rushkoff, Douglas. Program or be Programmed. OR Books, 2010. 
 
Prensky, Marc. “Programming is the New Literacy.” 

Marc Prensky is the pop-educational theorist behind the “digital natives” term that 
most technology educators now groan about. As with his other work, this is pretty 
shallow in terms of analysis and historical reference, but it’s darn quotable: 

As programming becomes more important, it will leave the back room and 
become a key skill and attribute of our top intellectual and social classes, 
just as reading and writing did in the past. Remember, only a few centuries 
ago, reading and writing were confined to a small specialist class whose 
members we called scribes. 

This is a readable general overview of the topic without the political urgency of 
Rushkoff. And Prensky was a little ahead of the curve in pop-talk about coding as 
literacy. 
Prensky, Marc. “Programming is the New Literacy.” Edutopia. 13 Jan 2008. 

http://www.edutopia.org/literacy-computer-programming 
 

 
Blogs & Online Writings 

Guzdial, Mark. Computing Education Blog.  
Georgia Tech computer science educator Mark Guzdial has a sustained interest in 
teaching computer programming to non-CS people, and blogs about it occasionally 
on this site. Lots of good stuff about procedural literacy, which is his preferred 
term.  
Guzdial, Mark. Computing Education Blog. Wordpress. Web. 

<http://computinged.wordpress.com/>. 
 
Why the Lucky Stiff. “The Little Coder’s Predicament.”   

Why the Lucky Stiff was the pseudonym of a prominent member of the Ruby 
programming language community and author of a crazy, Ted Nelson-inspired 
book on Ruby, “Why’s Poignant Guide to Ruby,” who disappeared from the scene 
in 2010 (he’s all right and if you’re curious, you can read more about him in this 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

9	
  

Slate article 
http://www.slate.com/articles/technology/technology/2012/03/ruby_ruby_on_rails_
and__why_the_disappearance_of_one_of_the_world_s_most_beloved_computer_
programmers_.html ).  
This little gem of a piece talks about what it’s like to learn programming now, 
versus the BASIC days. Why has some other wonderful pieces online that you can 
access here: http://viewsourcecode.org/why/ as well as a wonderful video from the 
2009 Art && Code Symposium, where I was lucky enough to encounter him: 
https://vimeo.com/5047563 
Why the Lucky Stiff. “The Little Coder’s Predicament.”  11 Jun 2003. Avogato. 

Web. 23 Apr 2010. <http://www.advogato.org/article/671.html>. 
 
Perlin, Ken. Blog. “Does Universal Programming Literacy Even Make Sense?” 

“Yes, but Why?” 
In these two blog posts, this SIGGRAPH star computer scientist argues that 
computer programming should be thought of as writing, but that perhaps we don’t 
have the right language to accomplish that scale of programming just yet. In the 
second blog post (a response to comments on the first), he comes up with an 
analogy of programming to cooking, which lots of people perform at home and 
iterate on. Building on the metaphor, he writes, “the tools that allow millions of 
people to program in a powerful way are going to be those that allow those people 
to achieve goals which really matter to them.“ 
Perlin, Ken. Blog. “Does Universal Programming Literacy Even Make Sense?” 24 

Feb 2008. Web. http://blog.kenperlin.com/?p=97 . “Yes, but Why?” 27 Feb 
2008.  Web. http://blog.kenperlin.com/?p=100 .  

 
 
Work in English Studies  

Manovich, Lev. Software Takes Command.  
This e-book is available free here, and is a great introduction to software studies 
and the major ideas and players in this new field. In this book, he’s interested in 
the culture of software, and has moved away from an emphasis on computer 
science (which he had promoted in the 2001 version of the book). He wants to 
explore how software is constituting society, and how society constitutes it. “our 
contemporary society can be characterized as a software society and our culture 
can be justifiably called a software culture – because today software plays a 
central role in shaping both the material elements and many of the immaterial 
structures which together make up “culture”" (16-17). No literacy discussion per se, 
but an important work for this area nonetheless.  
Manovich, Lev. Software Takes Command. Web. 2008. 

http://lab.softwarestudies.com/2008/11/softbook.html 
 

Hayles, N. Katherine. My Mother was a Computer and “Deeper into the Machine” 
Electronic literature scholar Hayles has long been interested in intersections 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

10	
  

between code and text from a literary perspective. From a literacy perspective, the 
work is less relevant, but I still find her theoretical approach useful. My Mother was 
a Computer also provides a great review and interpretation of Derrida, Saussure, 
Hansen, Aarseth, Kittler, McGann, Kurzweil, and Wolfram—all of whom are 
relevant to code studies in some way. The most interesting moments in this book 
for me were her look at the “worldview” of speech, text and code, and what each 
implies. For instance, the “regime of computation,” draws on Stephen Wolfram's 
cellular automata. There's revealing and concealing inherent in code (through 
objects in OOP, for instance), and that ability is built into our ways of looking at the 
world now. She then applies this analysis to literariness and wants to see how 
simple systems can grow more complex for high-level literariness. 
 
Her essay, “Deeper into the Machine,” explores the literary “push toward the 
creation of a creole comprised of English and code. These works draw on the 
literary tradition and programming protocols to ask what it means for contemporary 
users to be constructed by both. What kinds of subjects are spoken by this 
creole?” She asks, “What kinds of subjectivities are implied by the interfaces 
created by these works, and what is their relation to the machines that write 
them?” (372). The book Writing Machines also explores this idea, with some help 
from Turing’s concepts of computational simulation.  
Hayles, N. Katherine. “Deeper into the Machine: Learning to Speak Digital.” 

Computers and Composition 19.4 (2002): 371-86. ScienceDirect. Web. 19 
Aug 2008. 

Hayles, N. Katherine. My Mother Was A Computer: Digital Subjects and Literary 
Texts. University of Chicago, 2005.  

 
Selber, Stuart A. Multiliteracies for a Digital Age.  

This is an important book for the fields of composition and rhetoric / computers and 
writing, in particular. It’s focused on academic administration, and outlines a 
program to structure teaching of multiliteracies. Selber’s framework of functional, 
critical, and rhetorical literacies is well thought-out and useful. The most interesting 
for computer programming and literacy is the rhetorical framework, which focuses 
on production of compositions with computers, although Selber doesn’t deal much 
with programming as part of this production. 
Selber, Stuart A. (2004). Multiliteracies for a digital age. Carbondale, IL: Southern 

Illinois University Press. 
 
Leblanc, Paul. Writing Teachers Writing Software.  

Strangely, this book isn’t referenced very much in the fields of composition and 
rhetoric or computers and writing, although it comes from those fields and I think it 
should be. It’s another of those early 1990s “what could have been” scenarios, as 
Leblanc imagines, well, writing teachers writing software—particularly to support 
writing practices. This book was before the hegemony of Microsoft Word, and 
reveals a moment where this appeared a more plausible possibility. His vision and 
enthusiasm makes this a fun read.  



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

11	
  

Leblanc, Paul. Writing Teachers Writing Software. Advances in Computers and 
Composition Studies. Urbana, IL: NCTE, 1993. Print. 

 
 
Dissertations 

Black, Maurice. “The Art of Code.”  
This is an excellent dissertation that is, unfortunately, very hard to get because it 
only exists in a single, print-copy form that must be requested through the UPenn 
library. (I don’t think the author has ever published from it, but please alert me if so! 
I think he might have left academia.) Nick Montfort’s notes are great (and what 
persuaded me to request the dissertation to read): 
http://nickm.com/if/art_of_code.html . My more detailed notes are available online, 
too: http://www.annettevee.com/blog/2012/06/04/my-notes-on-maurice-blacks-the-
art-of-code/   
Black, Maurice. “The Art of Code.” University of Pennsylvania, Department of 

English, 2002. Print. 
 
Miller, Jonathan A. “Promoting Computer Literacy through Python Programming.”  

This dissertation is available on the Python.org website. It’s focused on Python, 
but makes claims about literacy and programming more generally. Miller makes a 
central claim that computer literacy (by which he basically means programming) 
builds on traditional literacy—they are “intertwining literacies” (6)—and so working 
on computer literacy augments rather than competes with textual literacy.  This 
analogy is the most useful for understanding how he frames computer literacy: “ 
“Reading : Writing :: Using a computer : Programming a computer” (10). Miller 
points out that programming isn’t just about writing the code; it's also about 
conceptualizing the problem, creating a viable algorithm, debugging, expression, 
etc. Algorithmic thinking is about breaking down a problem into smaller and 
smaller tasks (50). Miller rests his argument about programming education on this 
idea: “it will be important to learn computer literacy because students will use 
computer literacy to learn” (35). He suggests that programming should be taught 
across the curriculum because of the thinking and problem-solving it allows people 
to do, but also because the line between using multimedia software and 
programming it is blurring. Unfortunately, this is all of Miller’s work in this area, as 
he took his research in other directions afterward.  
Miller, Jonathan A. “Promoting Computer Literacy through Python Programming.” 

University of Michigan, 2004. Web. Python.org. 7 Sep 2007. 
<www.python.org/files/miller-dissertation.pdf>. 

 
Vee, Annette. “Proceduracy: Computer Code Writing in the Continuum of Literacy.”  

My dissertation addresses this topic from a literacy studies perspective, with 
special attention to the history of literacy. I focus on the intersecting technological 
and social factors of computer code writing as a literacy—a practice I call 
proceduracy. Like literacy, proceduracy is a human facility with an expressive 
technology. I provide conceptual and contemporary portraits of proceduracy to 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

12	
  

place it within a longer social and technological history of literacy, beginning with 
the transition of text into the infrastructure of English society in the 11th – 13th 
centuries and continuing through the push for mass textual literacy in the 18th – 
20th  centuries. I conclude by exploring the pathways to and implications of mass 
proceduracy. My dissertation isn’t available online, but I’ll send it to you if you 
email me. Or, you can just wait for the book!  
Vee, Annette. “Proceduracy: Computer Code Writing in the Continuum of Literacy.” 

University of Wisconsin, Department of English, 2010. 
 
 
 
Other recommended articles/books  

These are all listed alphabetically and I’ve added notes by many of them. Many of these 
are important texts, but didn’t make it into the list above because they don’t deal directly 
with computer programming as a kind of literacy. Again, a subjective list, and it only 
contains works that I can recommend personally. 
 
Computer history 
Campbell-Kelly, Martin, and William Aspray. Computer: A History of the Information 

Machine. The Sloan Technology Series. 2nd ed. Boulder, CO: Westview Press, 
2004. Print. [Great intro text for the history of computing] 

Ensmenger, Nathan. “The ‘Computer Boys’ Take Over.” Cambridge, MA: MIT Press. 
2010. Print. 

---. “Letting the ‘Computer Boys’ Take Over: Technology and the Politics of Organizational 
Transformation.” International Review of Social History Supplement (2003): 153-
80. JStor. Web. 13 Apr 2008. 

---. “Making Programming Masculine.” Gender Codes: Women and Men in the Computing 
Professions. Ed. Misa, Tom: IEEE, 2010. 

---. “Software as History Embodied.” IEEE Annals in the History of Computing 31.1 (2009): 
88-91. ACM Digital Portal. Web. 31 Aug 2009. 

Kemeny and Kurtz. Back to BASIC. Addison Wesley, 1985. [About the design and early 
implementation of BASIC at Dartmouth. Readable and interesting, but the authors 
are bitter about BASIC language design balkanization.] 

Light, Jennifer. “When Computers Were Women.” Technology and Culture 40.3 (1999): 
455-83. Project Muse. Web. 29 Oct 2009. 

Mahoney, Michael. Histories of Computing. Cambridge, MA: Harvard University Press, 
2011. [Collection of wonderful essays by the late Mahoney.] 

Turing, Alan. “On Computable Numbers, with an Application to the 
Entscheidungsproblem.” The Essential Turing. 1936. Oxford, UK: Clarendon 
Press, 2004. 58-90. Print. [Read the birth of the computer!] 

Nelson, Theodor Holm. “A File Structure for the Complex, the Changing, and the 
Indeterminate.” ACM : Proceedings of the 20th National Conference   (1965): 84-
100. ACM Digital Portal. Web. 11 Jun 2008. [hyperlinks!] 

 
 
Broad-audience books on history and programming culture 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

13	
  

Graham, Paul. Hackers & Painters: Big Ideas from the Computer Age. Sebastopol, CA: 
O’Reilly, 2004. Print. [Graham is the founder of Y-combinator startup promoter and 
an important thinker in programming. Check out his website here 
http://paulgraham.com/] 

Kohanski, Daniel. The Philosophical Programmer: Reflections on the Moth in the Machine. 
New York: St. Martin’s Press, 1998. Print. [Insightful though seldom-cited book on 
programming philosophy.] 

Kushner, David. Masters of Doom. Random House, 2004. [about id software founders 
John Romero and John Carmack, and the early 1990s video game industry] 

Lessig, Lawrence. Code or Code 2.0. [Both are good books and deal with the 
intersections of law and code, by a popular IP/constitutional law scholar and co-
founder of Creative Commons.] 

Levy, Steven. Hackers: Heroes of the Computer Revolution. [25th anniversary edition is 
out now, but first published in 1984. Widely read, fun and important!] 

Lohr, Steve. GoTo: […] The Programmers who Created the Software Revolution. Basic 
Books, 2002. [wonderful history, including of MS Word, PARC, etc.] 

Raymond, Eric. The Cathedral and the Bazaar. 1999. Sebastopol, CA: O’Reilly, 2001. 
Print. [Raymond, an open source promoter, coined the major metaphor for open 
source—the bazaar. Good essays in here.] 

Stephenson, Neal. In the Beginning was the Command Line. Avon Books, 1999. [Quick 
and provocative read from the science fiction author who laments the transition 
from the command line to GUIs.] 

Weber, Steve. The Success of Open Source. Cambridge, MA: Harvard University Press, 
2004. Print. [Really important and readably book about the history and economics 
of open source software] 

 
 
Code studies (critical code studies, software studies, etc.) 
Berry, David. Philosophy of Software: Code and Mediation in the Digital Age. Palgrave 

Macmillan, 2011. [Theory-heavy book in which Berry wants to make software more 
“visible” by unpacking how code runs and how software is built. Also check out his 
frequently-updated blog, Stunlaw: http://stunlaw.blogspot.com/ , where he’s posted 
articles on iteracy http://stunlaw.blogspot.com/2011/09/iteracy-reading-writing-and-
running.html and computational thinking 
http://stunlaw.blogspot.com/2012/03/computational-thinking-some-thoughts.html 

Chun, Wendy Hui Kyong. Programmed Visions: Software and Memory. MIT Press, 2011. 
[Interesting and highly theoretical book on source code as fetish, as memory, and 
politics of visibility/invisibility.] 

Coleman, Biella. Coding Freedom: The Ethics and Aesthetics of Hacking. Princeton 
University Press, Forthcoming Nov 2012. [I haven’t read the book because it’s not 
out yet, but Coleman’s other work on hackers and code is great, and I’m sure the 
book will be, too. See her work on her website: http://gabriellacoleman.org/] 

DeNardis, Laura. Protocol Politics: The Globalization of Internet Governance. MIT Press, 
2009. [Smart and highly technical historical and political analysis of internet 
governance, through legal and digital code.] 

Fuller, Matthew, ed. Software Studies: A Lexicon. Cambridge, MA: MIT Press, 2008. Print. 
[A fun edited collection where each code-savvy author contributed a piece named 
with some aspect of software, e.g., glitch, Perl, pixel, loop.]  



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

14	
  

Fuller, Matthew. Behind the Blip: Essays on the Culture of Software. Autonomedia: 
Brooklyn, NY. 2003. [This is a creatively written foray into “software criticism.” I 
have found the first essay—the introduction to the idea—more useful than the 
others, which are written in a more creative and gestural style.]  

Galloway, Alexander. Protocol: How Control Exists after Decentralization. MIT Press, 
2004. [important theoretical work on how protocol operates, including online 
through code.] 

Galloway, Alexander and Eugene Thacker. The Exploit: A Theory of Networks. MIT Press, 
2007. [how people can exploit protocol to get into networks, highly theoretical and 
technical.] 

Kirschenbaum, Matthew. Mechanisms: New Media and the Forensic Imagination. MIT 
Press,  2007. [More about hardware and literature than software, but great and 
clearly written text that takes the materialist perspective of book history to 
computers.] 

Kittler, Friedrich. “There is no software.” Ctheory, 1996. 
http://www.ctheory.net/articles.aspx?id=74 [about intersections/ interactions/ 
invisibilities between hardware and software, from a philosophical perspective] 

Marino, Mark. “Critical Code Studies.” Electronic Book Review  (4 Dec 2006). Web. 30 Jun 
2009. <http://www.electronicbookreview.com/thread/electropoetics/codology>. 
[Where the term “critical code studies” was launched—a literary analysis 
perspective on reading code.] 

Mateas, Michael, and Nick Montfort. “A Box, Darkly: Obfuscation, Weird Languages, and 
Code Aesthetics.” Proceedings of the 6th Digital Arts and Culture Conference, IT 
University of Copenhagen   (2005): 144-53. NickM.com. Web. 1 Mar 2009. 
[Wonderful fun article on languages like Brainfuck and the Underhanded C 
programming contest.] 

Shirky, Clay. “Situated Software.” Clay Shirky’s Writings about the Internet  (2004). Web. 
15 Jan 2010. <http://www.shirky.com/writings/situated_software.html>. [Where 
Shirky argues about “downsourcing” software to other fields rather than 
“outsourcing” it] 

Wardrip-Fruin, Noah. Expressive Processing: Digital Fictions, Computer Games, and 
Software Studies. Cambridge, MA: MIT Press, 2009. Print. [Great book on 
programmatic processing in creative works. He argues that analysts of this work 
need to understand the code to understand the work.] 

 
In composition and rhetoric  
Ballentine, Brian. “Hacker Ethics & Firefox Extensions: Writing & Teaching the ‘Grey’ 

Areas of Web 2.0.” Computers and Composition Online, 2009. 
http://www.bgsu.edu/cconline/Ed_Welcome_Fall_09/compinfreewareintroduction.h
tm  

Banks, Adam. Race, Rhetoric, and Technology. Lawrence Erlbaum, 2006. [Awesome intro 
reference to BASIC; the rest of the book deals with critical issues of race and 
technology, although less directly with code. Chap 2 has been the most useful to 
me, personally, and I’ve assigned it to students.] 

Cummings, Robert. “Coding with Power: Toward a Rhetoric of Computer Coding and 
Composition.” Computers and Composition  23 (2006): 430-46. ScienceDirect. 
Web. 20 Apr 2010. [Argues for writing teachers to embrace coding.] 



Computer Programming & Literacy: An Annotated Bibliography (cc licensed by Annette Vee, 2012) 
	
  

15	
  

Rieder, David. Scripted Writing. Small Tech [He's talking about new trends in “digital 
writing”, where lines between text and code are blurred, and code is used for 
poetic potentiality. He asks, “How....do we develop a study of digital writing that 
recognizes interplay and upholds the distinction between the two species?” (86) 
His answer, and a main point of the text is to offer poetry as a potential space for 
these creative acts. For Rieder, code is written for humans primarily—the poetic 
ways of expressing code in both its text and object form.] 

Sorapure, Madeleine. “Text, Image, Code, Comment: Writing in Flash.” Computers and 
Composition 23 (2006): 421-29. Print. [Great article from one of the most creative 
and technical talents in the field.] 

Olson, David R. “Computers as Tools of the Intellect.” Educational Researcher 14.5 
(1985): 5-8. JStor. Web. 29 Dec 2008. [makes some similar arguments to Papert] 


